0 EA
장바구니 주문배송조회 마이페이지
   현재위치 : HOME >
Genes & Signals
판매가격  : 30,000원
적립금  : 900점
출판사  : CSHL
저자  : Ptashne
발행일  : 2001년
페이지 수  : 192면
ISBN  : 0879696338
소개하기  :
주문수량  :

Chapter 1: Lessons from Bacteria
Three mechanisms for activating transcription of specific genes in E.coli are presented. The simplest – and most common – is called "Regulated Recruitment". In this case, the activator – a DNA binding protein that switches on expression of a gene – only has to recruit an enzyme – RNA polymerase – to the gene. Examples of this mechanism (as found at the lac genes and genes of phage lambda) are described in detail, along with the experimental approaches used to elucidate the mechanism. The other two mechanisms – in which either the polymerase or the gene must undergo a structural change induced by an activator – are again illustrated using examples of each (control of the glnA gene by NtrC; and control of the merT gene by MerR); again, the experimental basis for the proposed mechanisms is in each case described.
Where they are used, the roles of repressors – DNA binding proteins that switch off the expression of specific genes – are discussed. How extra-cellular signals control the activities of activators and repressors is examined. Also, the ways in which two activators, or an activator and a repressor, can work together to integrate signals at a given gene is discussed. Often the same regulators can be used in different combinations – a phenomenon called "combinatorial control".
The rather simple "adhesive" protein surfaces required for regulated recruitment are emphasized. Other aspects, such as the phenomenon of cooperativity, are discussed in some detail.
Chapter 2: Yeast: A Single-celled Eukaryote
Which of the three basic mechanisms of gene activation found in bacteria is used to switch on the typical yeast gene? This is the question asked in this chapter.
As in bacteria, genes in yeast can be switched on by activators and switched off by repressors. As in bacteria, these regulatory proteins are controlled by extra-cellular signals. But unlike the bacteria cases – where the "transcription machinery" consisted of a single enzyme (RNA polymerase) – in eukaryotes, even the relatively simple yeast, that machinery is far more complicated. And in addition, the genes themselves are wrapped in histones to form nucleosomes.
Despite these complications, many of the same experiments that were revealing in bacteria can be performed in yeast as well. (Control of the GAL1 gene by the activator Gal4 is taken as an example). These experiments reveal that, despite the complexities, regulated recruitment is the basic mechanism of activation in yeast. In this case, enzymes that modify the state of nucleosomes in various ways, or that promote transcriptional elongation as well as initiation, are often recruited, along with the basic transcriptional machinery, to switch on genes. Thus a general theme emerges: simple molecular interactions can be reiterated and supplemented by "add ons", as evolution proceeds, to create ever more sophisticated regulatory responses.
The role of repressors (e.g. Mig1/TUP1 repression of GAL1) is discussed as well, as are examples of signal integration and combinatorial control (in regulation of the yeast mating type genes; and of the HO gene), and the phenomenon of "gene silencing".
Chapter 3: Some Notes on Higher Eukaryotes
Evidently regulated recruitment explains the action of the typical activator from higher eukaryotes – mammals, flies etc – just as it does that from yeast. The evidence is discussed at the beginning of this brief chapter.
But higher eukaryotes use signal integration and combinatorial control to a far greater extent than either yeast or bacteria. This allows them to produce an extraordinary range of patterns of gene expression – something which in turn allows these organisms to be so complex and varied despite the relatively "small" number (and similar types) of genes they each posses. How the activators and repressors achieve this is discussed (using the human interferon-beta gene, and the Drosophila eve gene as examples). Finally, one or two other characteristic problems faced by higher eukaryotes – e.g. activation at a distance, imprinting etc – are also described and the extent to which they can be explained in terms of regulated recruitment discussed.
Chapter 4: Enzyme Specificity and Regulation
In this final chapter, the principles of regulation uncovered in our survey of transcription are applied to enzymes involved in other processes ?signal transduction, protein degradation, the cell cycle, splicing etc. Regulated Recruitment is found to play a large part in how specificity and regulation are imposed on many of these enzymes – e.g. kinases, phosphatases, and ubiquitylating enzymes. The dangers and benefits of regulating enzymes in this way are considered, as are the problems of interpreting certain commonly performed experiments involving enzymes that work in this way.

{교재 사용시 강의 자료 문의 바랍니다.}
제품명 Genes & Signals
판매가격 30,000원
제조사 CSHL
위 상품과 관련된 상품이 없습니다.
번호 제목 이름 별점 날짜
아직 작성된 상품평이 없습니다.
번호 제목 이름 날짜 비고
작성된 상품문의가 없습니다.
구입제품의 이상이 있을 경우
- 구입후 7일 이내에 동일제품으로 교환 가능하며 운송비는 판매자 부담입니다.
- 다른 제품으로 교환, 또는 이상이 없는 제품과 함께 교환을 원하실 경우 구매자께서 운송비를 부담합니다.

구입제품의 이상이 있을 경우 (색상,사이즈,다른상품교환)
- 구입후 7일이내 교환 가능하며 구매자께서 운송비를 부담합니다.
(30000원 이상 구매하셔서 택배비를 무상으로 받으셨을 경우, 취소하시게 되면 왕복 운송비를 구매자께서 부담합니다.)

!! 주의사항
비닐포장 및 Tag의 폐기 또는 훼손 등으로 상품 가치가 멸실된 경우에는 제한.
반품시에 해당 사은품이 있을 경우 같이 보내주셔야 합니다.
결제후 2~5일 이내에 상품을 받아 보실 수 있습니다.
국내 최대의 물류사 CJ택배를 통하여 신속하고 안전하게 배송됩니다.
3만원 이상 구입시 무료배송입니다.
(제주도를 포함한 도서,산간지역은 항공료 또는 도선료가 추가됩니다.)
결제방법은 신용카드, 국민/BC(ISP), 무통장입금, 적립금이 있습니다.
정상적이지 못한 결제로 인한 주문으로 판단될 때는 임의로 배송이 보류되거나,주문이 취소될 수 있습니다.
레닌저 핵심생화학 생화학.. 2019/03/24
레닌저 생화학 그림 파일 2019/03/24
문의드립니다. 2019/03/13
[답변] 문의드립니다. 2019/03/21
더셀 번역서는 언제쯤 나.. 2019/01/15
Genomics, Proteomics and.. 60,000원
Functional Metabolism : .. 50,000원
상담시간    평일 09:30 ~ 18:00 토,일,공휴일 휴무
상담 및 문의전화    02-581-5811~3 |  팩스:02-521-6418 (worldscience5811@naver.com)
상호 : (주)월드사이언스|서울특별시 서초구 도구로 115, 1층(방배동, 월드빌딩)
사업자등록번호 : 120-81-64063 (정보확인)| 통신판매업신고 : 서울 서초 제1520호
대표이사 : 박선진| 개인정보 관리책임자 : 박선진| 개인정보 보호기간 : 회원탈퇴시
Copyrightⓒ (주)월드사이언스 All rights reserved. Designed by wepas.com